Abstract
Applications in nanomedicine, such as diagnostics and targeted therapeutics, rely on the detection and targeting of membrane biomarkers. In this article we demonstrate absolute quantitative profiling, spatial mapping, and multiplexing of cancer biomarkers using functionalized quantum dots (QDs). We demonstrate highly selective targeting molecular markers for pancreatic cancer with extremely low levels of nonspecific binding. We confirm that we have saturated all biomarkers on the cell surface, and, in conjunction with control experiments, extract absolute quantitative values for the biomarker density in terms of the number of molecules per square micron on the cell surface. We show that we can obtain quantitative spatial information of biomarker distribution on a single cell, important because tumors' cell populations are inherently heterogeneous. We validate our quantitative measurements (number of molecules per square micron) using flow cytometry and demonstrate multiplexed quantitative profiling using color-coded QDs. From the Clinical EditorThis paper demonstrates a nice example for quantum dot-based molecular targeting of pancreatic cancer cells for advanced high sensitivity diagnostics and potential future selective therapeutic purposes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nanomedicine: Nanotechnology, Biology and Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.