Abstract
This paper discusses and models the program instability observed in filamentary Hf-based RRAM devices in the context of the Hourglass model. It is demonstrated that two variability sources can be distinguished: (i) number variations of the amount of vacancies in the filament constriction and (ii) constriction shape variations. The shape variations are not stable in time and show a log(time)-dependent relaxation behavior after each programming pulse. This makes program/verify schemes, aiming at widening the resistive window, highly ineffective. We develop a quantitative, mathematical description of the instability using an auto-correlated step process of the shape parameters of the QPC conduction model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.