Abstract

A quantitative method of image processing coupled with the neutron radiography technique is proposed to accurately measure the void fraction of a two-phase flow in a metallic duct. The spatial distribution of the dark current component is experimentally shown to be smooth, and the temporal variation cannot be ignored. Since the neutrons scattered in an object can be smoothed and reduced by setting the test section at a large distance from the converter, it is clarified that the corrections for the dark current and scattered neutrons can be represented by an offset. The offset value can be determined by using the total macroscopic cross section of the object ({Sigma}-scaling method). By comparing the calculated void fractions with the measured ones obtained by simulating the known void profile using a standard test section, the void fraction can be measured by this method within 2% error. The measurement error is estimated to be up to {approximately}10% when no correction for scattered neutrons is made or arbitrary offset values are used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.