Abstract

Serum free light chain (sFLC) assays are well established in the diagnosis and monitoring of plasma cell disorders. However, current FLC immunoassays are subject to several analytical issues, which results in a lack of harmonized results. To facilitate sFLC standardization, we investigated the strengths and limitations of mass spectrometry as a novel technological platform for sFLC quantification. Stable isotope labeled reference peptides are added to serum samples for quantitation by selected reaction monitoring (SRM). The use of redundant peptide sets allows for quality control measures during data analysis. Measurements on serum provide information on intact immunoglobulins, but depletion of these intact molecules from the sera during sample processing permits the quantitation of sFLC. sFLC concentrations measured with SRM were comparable to those obtained by nephelometry and showed excellent linearity (r(2) > 0.99). In samples with high levels of sFLC, SRM data was more consistent with serum protein electrophoresis than nephelometric data and SRM is unaffected by antigen excess. The lower limits of quantitation were 3.8 and 2.7 mg/L for κ and λ sFLC. Errors due to polymorphic sequences were prevented by comparison of redundant peptide pairs. The application of stable isotope labeling combined with SRM can overcome many of the current potential analytical issues of sFLC analysis. We describe which hurdles still need to be taken to make SRM a robust and more accurate method for sFLC measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.