Abstract
Current next-generation RNA sequencing methods do not provide accurate quantification of small RNAs within a sample due to sequence-dependent biases in capture, ligation, and amplification during library preparation. We present a method, Absolute Quantification (AQ) RNA-seq, that minimizes biases and provides a direct, linear correlation between sequencing read count and copy number for all small RNAs in a sample. Library preparation and data processing were optimized and validated using a 963-member miRNA reference library, oligonucleotide standards of varying lengths, and northern blots. Application of AQRNA-seq to a panel of human cancer cells revealed >800 detectable miRNAs that varied during cancer progression, while application to bacterial tRNA pools, with the challenges of secondary structure and abundant modifications, revealed 80-fold variation in tRNA isoacceptor levels, stress-induced site-specific tRNA fragmentation, quantitative modification maps, and evidence for stress-induced tRNA-driven codon-biased translation. AQRNA-seq thus provides a versatile means to quantitatively map the small RNA landscape in cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.