Abstract

The availability of Scots pine seeds (Pinus sylvestris L.) with high germinability is necessary for artificial forest regeneration. In this work, Scots pine seed orchard seeds were magnetic resonance (MR) imaged to noninvasively investigate the association of the anatomical images and quantitative relaxation times with the structure and germinability of the seeds. Relaxation time differences compared to the germination day were also investigated. The average whole seed relaxation times T1 (two methods), T2, and [Formula: see text] were 430 ± 59, 660 ± 20, 14 ± 1.7, and 0.83 ± 0.33 ms, respectively. It was observed that the seed structures had statistically significant (p < 0.05) differences in relaxation times, while no differences could be observed in relation to the rate of seed germination. Furthermore, the obtained data were compared to radiographs. Empty seeds were observed to provide a minimal MRI signal, whereas intact and mechanically damaged seeds provided a profound signal with distinguishable structures. The mechanically hardest region, i.e., the seed coat, was not visible in MRI as opposed to radiographs. Some seeds determined to be mechanically damaged by radiography were able to germinate, and mechanical faults could be distinguished in MRI. As such, MRI can be seen complementary to the currently used methods to optimize seed sorting and to interpret germination potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.