Abstract

Long-lived conifer trees depend on both constitutive and induced defenses for resistance against a myriad of potential pathogens and herbivores. In species of spruce (Picea spp.), several of the late events of pathogen-, insect-, or elicitor-induced defense responses have previously been characterized at the anatomical, biochemical, transcriptome, and proteome levels in stems and needles. However, accurately measuring the early events of induced cellular responses in a conifer is technically challenging due to limitations in the precise timing of induction and tissue sampling from intact trees following insect or fungal treatment. In the present study, we used the advantages of Norway spruce (Picea abies) cell suspensions combined with chitosan elicitation to investigate the early proteome response in a conifer. A combination of iTRAQ labeling and a new design of iterative sample analysis employing data-dependent exclusion lists were used for proteome analysis. This approach improved the coverage of the spruce proteome beyond that achieved in any prior study in a conifer system. Comparison of elicitor-induced proteome and transcriptome responses in Norway spruce cells consistently identified features associated with calcium-mediated signaling and response to oxidative stress that have not previously been observed in the response of intact trees to fungal attack.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.