Abstract

AbstractRecent research indicates that nanophysical properties as well as biochemical cues can influence cellular re-colonization of a tissue scaffold. It has also been shown nanoscale elasticity can strongly influence cellular responses. In the present work, quantitative investigations of the elasticity of a nanofibrillar matrix scaffold that has demonstrated promise for spinal cord injury repair are compared with complementary transmission electron microscopy investigations, performed to assess nanofiber internal structures. Interpretive model improvements are identified and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.