Abstract

The widespread use of zinc oxide nanoparticles (ZnO NPs), the second most produced nanomaterial, inevitably leads to their release into the environment. In this study, dissolution and transformation of ZnO NPs in the presence of δ-MnO2, an abundant and ubiquitous manganese (Mn) oxide mineral, was investigated via a suite of techniques covering bulk to molecular scales. Dissolution kinetics indicated that the presence of δ-MnO2 significantly affected ZnO NP dissolution rate/trend and equilibrium Zn2+ concentration, which were found to be mainly dependent on the concentration and mass ratio of ZnO NPs and δ-MnO2. Approximately 300mg ZnO NPs per g δ-MnO2 was expected for ZnO NP uptake at pH7.0 via ZnO NP dissolution and surface Zn2+ adsorption. X-ray diffraction (XRD), ζ potential, high-resolution transmission electron microscopy (HR-TEM), and Zn K-edge X-ray absorption spectroscopy (XAS) results revealed that when the mole content of ZnO NPs was less than the total adsorption sites of δ-MnO2 surface, ZnO NPs were completely dissolved and adsorbed on δ-MnO2 surface in the form of inner-sphere complexes. A fraction of ZnO NPs persisted when the mole ratio of ZnO to δ-MnO2 further increased. These results suggest that the transformation and fate of ZnO NPs is affected by environment-relevant minerals such as Mn oxides due to their huge capacity of fixing dissolved metal cations at the surface or interlayer structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.