Abstract
Drain current DLTS (ID-DLTS) and Hall effect measurements were carried out on two types of 4H-SiC n-MOSFETs, one with a post oxidation annealing (POA) in NO and one in O2 atmosphere. Hall effect measurements show a reduction of Dit by POA in NO compared to POA in O2 and, as a consequence, a higher inversion charge carrier density, while the Hall mobility is only weakly affected by the introduction of nitrogen during POA. Based on ID-DLTS we provide a method for a quantitative and selective investigation of near interface traps (NITs) in the oxide. It is shown that POA in NO strongly reduces the density of NITs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.