Abstract

Introduction Quantitation of the expression levels of proteins involved in drug transport and disposition is needed to overcome limitations of film-based detection of chemiluminescent immunoblots. Purpose The purpose was to describe and validate a quantitative immunofluorescent blotting method for detection of ATP-Binding Cassette Transporter Isoform C2/Multidrug Resistance-associated Protein 2 (ABCC2/MRP2). Methods Western blotting was performed by electrophoresis of membrane vesicle protein isolated from Sf9 cells overexpressing MRP2 subsequently blotted with infrared labeled secondary antibody. The bound complex was detected using the Odyssey Infrared Imaging System (Li-Cor; Lincoln, NE). The images were analyzed using the Odyssey Application Software to obtain the integrated intensities, followed by linear regression of the intensity data. Results The limits of quantitation for the time- insensitive technique described here were from 0.001 μg to 0.5 μg of total membrane protein, the coefficient of variation of the slope was 8.9%; r 2 values were 0.986 ± 0.012. The utility and sensitivity of this technique were demonstrated in quantitating expression of MRP2 in human placental tissue samples, in which MRP2 was present in low abundance. Discussion The immunofluorescent blotting technique described provides sensitive, reproducible, and quantitative determinations of large, integral membrane proteins such as MRP2, all with potential long-term cost savings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.