Abstract
Quantitative susceptibility mapping (QSM) based on gradient echo (GRE) magnetic resonance phase data is a novel technique for non-invasive assessment of magnetic tissue susceptibility differences. The method is expected to be an important means to determine iron distributions in vivo and may, thus, be instrumental for elucidating the physiological role of iron and disease-related iron concentration changes associated with various neurological and psychiatric disorders. This study introduces a framework for QSM and demonstrates calculation of reproducible and orientation-independent susceptibility maps from GRE data acquired at 3T. The potential of these susceptibility maps to perform anatomical imaging is investigated, as well as the ability to measure the venous blood oxygen saturation level in large vessels, and to assess the local tissue iron concentration. In order to take into account diamagnetic susceptibility contributions induced by myelin, a correction scheme for susceptibility based iron estimation is demonstrated. The findings suggest that susceptibility contrast, and therewith also phase contrast, are not only linked to the storage iron concentration but are also significantly influenced by other sources such as myelin. After myelin correction the linear dependence between magnetic susceptibilities and previously published iron concentrations from post mortem studies was significantly improved. Finally, a comparison between susceptibility maps and processed phase images indicated that caution should be exercised when drawing conclusions about iron concentrations when directly assessing processed phase information.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.