Abstract
In this paper, we establish quantitative Green's function estimates for some higher dimensional lattice quasi-periodic (QP) Schr\"odinger operators. The resonances in the estimates can be described via a pair of symmetric zeros of certain functions and the estimates apply to the sub-exponential type non-resonant conditions. As the application of quantitative Green's function estimates, we prove both the arithmetic version of Anderson localization and the $(\frac 12-)$-H\"older continuity of the integrated density of states (IDS) for such QP Schr\"odinger operators. This gives an affirmative answer to Bourgain's problem in\cite{Bou00}.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.