Abstract

Telomeres are repetitive DNA sequences at the end of each chromosome that provide stability and prevent end-to-end chromosome fusions. In order to understand mechanisms responsible for telomere shortening, it is necessary to develop methods for accurate telomere length measurement that can be applied to archival and fresh tissue and cells. This unit describes in situ-based quantitative fluorescence in situ hybridization (QFISH) protocols using a fluorescence-conjugated telomere probe (peptide nucleic acid, PNA) that stains telomeres proportionally to their length. These protocols can be used on formalin-fixed paraffin-embedded tissue, lightly fixed tissue, cells isolated from tissue, cultured cells, and agar-embedded cells. The basic protocol for QFISH staining is modified to achieve excellent QFISH staining for a variety of cell preparations. Image-analysis techniques to quantitate average telomere lengths from tissues and isolated stained cells are also described.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.