Abstract

Degradation of silane coupling layers by water ingress in computer-aided design/computer-aided manufacturing (CAD/CAM) of resin composites has been reported qualitatively. In this study, we quantitatively evaluated how water absorption of CAD/CAM resin composites affects the silane coupling layer by in vitro and in silico methods. A Katana Avencia block (KAB) and an experimental matrix block composed of only a matrix resin were used to evaluate the effect of water immersion for seven days on the elastic modulus. X-ray photoelectron spectroscopy (XPS) with fluorine-labeling of the KAB was performed to evaluate the atomic percentage of F1s, which represents the hydrolysis amount by water immersion. In silico analysis of the three-dimensional model of the KAB was performed to determine the coupling ratios before and after water immersion. The elastic modulus of the KAB was 8.2 GPa before and 6.9 GPa after immersion in water. The atomic percentages of F1s in the after- and before-immersion groups were 14.31% and 11.52%, respectively, suggesting that hydrolysis of the silane coupling layer occurred during water immersion. From in silico analysis of the three-dimensional model of the KAB, the coupling ratio was predicted to be 78.2% before water immersion. After water immersion, the coupling ratio was predicted to be 68.4%. The in vitro and in silico approaches established in this study were able to predict the silane coupling ratios of CAD/CAM resin composites, and they showed that the silane coupling ratio decreased by water absorption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.