Abstract

Hydrogen-enhanced decohesion (HEDE) is a proposed mechanism of hydrogen-induced grain boundary (GB) fracture in metals and has been widely calculated from first principles over the past decade. However, the effect of GB-segregated solutes on HEDE is complex and rarely quantified. This study presents a quantitative numerical estimation method based on statistical thermodynamics using first-principles calculations of multiple hydrogen trappings at a GB and its fracture surfaces with segregated solutes. This method accurately estimates the lattice-dissolution-hydrogen-dependent HEDE, including the interactions caused by the segregated solute: the decohering or cohesion-enhancing effect of the solute itself, solute-hydrogen interaction, solute-affected hydrogen-hydrogen interaction, and mobile hydrogen effect. We present a trial calculation to examine how the attractive interaction between solute and hydrogen influences HEDE, showing that HEDE can be induced at lower hydrogen concentrations if not canceled by other interactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.