Abstract

BackgroundAlzheimer's disease (AD) is a neurodegenerative disease that exacts a huge toll on the patient, the healthcare system and society in general. Abundance and morphology of protein aggregates such as amyloid β plaques and tau tangles, along with cortical atrophy and gliosis are used as measures to assess the changes in the brain induced by the disease. Not all of these parameters have a direct correlation with cognitive decline. Studies have shown that only particular protein conformers can be the main drivers of disease progression, and conventional approaches are unable to distinguish different conformations of disease-relevant proteins. Methods and resultsUsing the fluorescent amyloid probes K114 and CRANAD-3 and spectral confocal microscopy, we examined formalin-fixed paraffin-embedded brain samples from different control and AD cases. Based on the emission spectra of the probes used in this study, we found that certain spectral signatures can be correlated with different aggregates formed by different proteins. The combination of spectral imaging and advanced image analysis tools allowed us to detect variability of protein deposits across the samples. ConclusionOur proposed method offers a quicker and easier neuropathological assessment of tissue samples, as well as introducing an additional parameter by which protein aggregates can be discriminated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.