Abstract

We propose a modification of measurement methodology allowing the overall respiration rate (VResp) close to the in situ conditions; size of the labile, respirable organic matter pool (OMResp); and its turnover time (Tt) to be calculated. In addition to the respiration of dissolved substrates by free-living bacteria, the respiration of attached bacteria and other planktonic organisms is also taken into account. In case study we evaluated the modified, quantitative description of respiration processes in surface waters of lakes of different trophic status: mezzo-eutrophic and eutrophic. In both types of studied environments, VResp oscillated between 1.0 μmol C l−1 h−1 and 3.0 μmol C l−1 h−1, and the size of the OMResp pool varied from 39.3 μM C to 828.7 μM C. Despite of higher OMResp concentrations in eutrophic lakes, we found a lower susceptibility of OM to respiration processes in eutrophic than in meso-eutrophic lakes but similar VResp in both types of lakes. We conclude that the proposed method allows a fast quantitative description of labile organic matter utilization by aerobic aquatic microorganisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.