Abstract

A novel elemental and chemical analysis scheme based on electron-channeling phenomena in crystalline materials is introduced, where the incident high-energy electron beam is rocked with the submicrometric pivot point fixed on a specimen. This method enables us to quantitatively derive the site occupancies and site-dependent chemical information of impurities or intentionally doped functional elements in a specimen, using energy-dispersive X-ray spectroscopy and electron energy-loss spectroscopy attached to a scanning transmission electron microscope, which is of significant interest to current materials science, particularly related to nanotechnologies. This scheme is applicable to any combination of elements even when the conventional Rietveld analysis by X-ray or neutron diffraction occasionally fails to provide the desired results because of limited sample sizes and close scattering factors of neighboring elements in the periodic table. In this methodological article, we demonstrate the basic experimental procedure and analysis method of the present beam-rocking microanalysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.