Abstract
AbstractImmune checkpoint blockade with programmed cell death (PD-1)/programmed death-ligand 1 (PD-L1) inhibitors has resulted in significant progress in the treatment of various cancer types. However, not all patients respond to PD-1/PD-L1 blockade, underscoring the importance of identifying new potential targets for immunotherapy. One promising target is the immune system modulator Siglec-15. In this study, we assess Siglec-15 expression in solid tumors, with a focus on lung, breast, head and neck squamous and bladder cancers. Using quantitative immunofluorescence (QIF) with a previously validated antibody, we found increased Siglec-15 expression in both tumor and immune cells in all the four cancer types. Siglec-15 was seen to be predominantly expressed by the stromal immune cells (83% in lung, 70.1% in breast, 95.2% in head and neck squamous cell and 89% in bladder cancers). Considerable intra-tumoral heterogeneity was noted across cancer types. As previously described for non-small cell lung cancer (NSCLC), Siglec-15 expression was seen to be mutually exclusive to PD-L1 in all the four cancer types, although this differential expression was maintained but somewhat diminished in head and neck squamous cell carcinoma (HNSCC). Siglec-15 was not prognostic either for overall survival (OS) or progression-free survival (PFS). In summary, we show broad expression of this potential immune modulatory target in a wide range of cancer types. These data suggest potential future clinical trials in these tumor types.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.