Abstract

We show how metabolic regulation as commonly understood in biochemistry can be described in terms of metabolic control analysis. The steady-state values of the variables of metabolic systems (fluxes and concentrations) are determined by a set of parameters. Some of these parameters are concentrations that are set by the environment of the system; they can act as external regulators by communicating changes in the environment to the metabolic system. How effectively a system is regulated depends both on the degree to which the activity of the regulatory enzyme with which a regulator interacts directly can be altered by the regulator (its regulability) and on the ability of the regulatory enzyme to transmit the changes to the rest of the system (its regulatory capacity). The regulatory response of a system also depends on its internal organisation around key variable metabolites that act as internal regulators. The regulatory performance of the system can be judged in terms of how sensitivity the fluxes respond to the external stimulus and to what degree homeostasis in the concentrations of the internal regulators is maintained. We show how, on the level of both external and internal regulation, regulability can be quantified in terms of an elasticity coefficient and regulatory capacity in terms of a control coefficient. Metabolic regulation can therefore be described in terms of metabolic control analysis. The combined response relationship of control analysis relates regulability and regulatory capacity and allows quantification of the regulatory importance of the various interactions of regulators with enzymes in the system. On this basis we propose a quantitative terminology and analysis of metabolic regulation that shows what we should measure experimentally and how we should interpret the results. Analysis and numerical simulation of a simple model system serves to demonstrate our treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.