Abstract

The efficiency of 5,5-dimethylpyrroline-1-N-oxide (DMPO) and alpha-(4-pyridyl-1-oxide)-N-tert.-butylnitrone (POBN) to spin trap hydroxyl radicals and hydrogen atoms, respectively, was studied in gamma-irradiated solutions where the radical yields are accurately known. The effects of dose, spin trap concentration, and pH and of the stability of the spin adducts on the spin-trapping efficiency were investigated. In degassed or N2-saturated solutions the spin-trapping efficiencies were 35% for DMPO and hydroxyl radicals and 14% for POBN and hydrogen atoms. The low spin-trapping efficiencies were shown not to be due to the instability of the DMPO-OH and POBN-H spin adducts or to the effects of H2O2 or O2. The low spin-trapping efficiency of DMPO may be explained by the reaction of hydroxyl radicals to abstract hydrogen from the DMPO molecule to produce carbon radicals as well as addition to the N = C double bond to form nitroxide radicals. For POBN the low spin-trapping efficiency for hydrogen atoms is explained in terms of addition reactions of hydrogen atoms to the aromatic ring and the pyridinium and nitrone oxygens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.