Abstract

The Molten Salt Reactor (MSR) represents a significant addition to India's clean energy initiative through nuclear energy. Noteworthy for its inherent safety features and the utilization of mixed fluoride salts (U, Th, Li) as molten-liquid fuel, this reactor stands out as a unique advancement. This paper showcases the application of Laser-Induced Breakdown Spectroscopy (LIBS) to ensure the chemical composition of the fuel. The micro-destructive nature of the analysis, minimal sample preparation requirements and the potential for remote analysis position LIBS as a viable alternative to Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The study encompasses the quantification of UF4 and ThF4, demonstrating both univariate and multivariate chemometrics calibration approaches. Various normalization methods on the raw spectral data are explored, and the results are meticulously compared. Upon evaluating different analytical methods, the optimal accuracy and precision achieved were in the range of approximately 2.6% and 3.9% for UF4, and about 0.4% and 0.5% for ThF4, respectively. This underscores the effectiveness of LIBS in ensuring the accurate determination of chemical composition in the context of MSR fuel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.