Abstract
We have successfully developed a new quantitative analytical ITAT-based SILC model which can explain both of the two field dependencies, i.e. Fowler-Nordheim (FN)-field and the direct tunneling (DT)-field dependent of A-mode and B-mode SILCs. While DT-field dependence of A-mode comes from the single trap assisted tunneling, FN-field dependence of B- mode originates at the tunneling via the multi-trap leakage path. We have also developed an analytical model for the anomalous SILC of the flash memory cell and investigate the properties of retention lifetime of failure bits. The anomalous SILC shows the DT-field dependence because of the tunneling via the incomplete multi-trap path. A remarkable behavior of retention characteristics predicted by our models is a nearly logarithmic time dependence. The Fowler- Nordheim tunneling model leads to an overestimation of lifetime at low Vth region. To take into account a position of each trap and clarify the detail characteristics of SILC, we have proposed a new Monte Carlo like approach for hopping conduction and successfully explained the anomalous SILC using only physical based parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.