Abstract

A method of quantitative analysis which is capable of analyzing powdered samples consisting of high-Z elements, such as ash, soil and aerosol, is developed. It is confirmed that an internal standard method using a powdered internal standard, which has almost the same particle size as that of a sample, gives quantitative values of concentration with satisfactory accuracy and reproducibility. It was successfully applied to standard samples such as NIST-Urban particulate matter (1648), GBW-Tibet soil (08302), BCR-City waste incineration ash (0497) and also to a practical fly-ash sample. As a result, it is found that the effect of self-absorption in the target is not negligible even for samples whose particle size is less than 4 μm, and a method of correcting it is established. Firstly, the effective thickness for self-absorption is estimated by comparing peak yields of a certain element for two measuring conditions of beam irradiation from the surface and from the back of the target. The correction factors can be estimated by using the effective thickness, values of concentration of principal elements and their photon absorption cross sections. For practical samples whose compositions are unknown, it is confirmed that accurate correction coefficients can be derived by carrying out an iterative calculation until a self-consistent solution between values of concentration of the main constituents and the correction factors is obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.