Abstract

Most of the commonly used calibration methods in quantitative spectroscopic analysis are established or derived from the assumption of a linear relationship between the concentrations of the analytes of interest and corresponding absolute spectral intensities. They are not applicable for heterogeneous samples where the potential uncontrolled variations in optical path length due to the changes in samples' physical properties undermine the basic assumption behind them. About a decade ago, a unique calibration strategy was proposed to extract chemical information from spectral data contaminated with multiplicative light scattering effects. From then on, this calibration strategy has been attentively examined, modified, and used by its developers. After more than 10 years of development, some important features of the calibration strategy have been identified. It has been proved that the calibration strategy can solve many complex problems in quantitative spectroscopic analysis. But, because of the relatively low awareness of the calibration strategy among chemometrics society, its potential has not been fully exploited yet. This paper reviews the theory of the calibration strategy and its applications with a view to introducing the unique and powerful calibration strategy to a wider audience.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.