Abstract
We demonstrate that annual peak demand days are characterized by both extreme values of predictors (such as weather) and large unpredictable shocks to demand. OLS approaches incorporate the former feature, but not the latter, leading OLS to produce downwardly-biased estimates of the annual peak. We develop a new estimation procedure, optimal forecast quantile regression (OFQR), that uses quantile regression to estimate a model of daily peak demand, then uses a loss function framework to estimate a quantile to predict the annual peak. We compare the results of the OLS and OFQR estimation approaches for 32 utility zones. While the OFQR approach is unbiased, OLS under-forecasts by nearly 5% on average. Further, OFQR reduces the average absolute percent error by 43%. A bootstrapping procedure generates forecast intervals with accurate 95% coverage in sample and 87% coverage out of sample.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.