Abstract
Environmental factors, such as drought stress, significantly impact maize growth and productivity worldwide. To improve yield and quality, effective strategies for early detection and mitigation of drought stress in maize are essential. This paper presents a detailed analysis of three imaging trials conducted to detect drought stress in maize plants using an existing, custom-developed, low-cost, high-throughput phenotyping platform. A pipeline is proposed for early detection of water stress in maize plants using a Vision Transformer classifier and analysis of distributions of near-infrared (NIR) reflectance from the plants. A classification accuracy of 85% was achieved in one of our trials, using hold-out trials for testing. Suitable regions on the plant that are more sensitive to drought stress were explored, and it was shown that the region surrounding the youngest expanding leaf (YEL) and the stem can be used as a more consistent alternative to analysis involving just the YEL. Experiments in search of an ideal window size showed that small bounding boxes surrounding the YEL and the stem area of the plant perform better in separating drought-stressed and well-watered plants than larger window sizes enclosing most of the plant. The results presented in this work show good separation between well-watered and drought-stressed categories for two out of the three imaging trials, both in terms of classification accuracy from data-driven features as well as through analysis of histograms of NIR reflectance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.