Abstract

Quantifying the photoinduced electron transfer properties of a single entity is of paramount importance for clarifying the link between the photoelectrochemical performance and the specific properties of an individual. Here, we successfully monitored the photoelectrochemical behavior of a single dye-sensitized ZnO entity on a Au ultramicroelectrode with different TiO2 film thicknesses. Due to a trap-limited electron diffusion in TiO2 film, a sub-millisecond photocurrent transient was observed for an individual N719@ZnO associated with single-particle photocatalytic water splitting. Furthermore, a Monte Carlo random walk numerical simulation model was developed to simulate the photoinjected electron transport dynamics and recombination in a nanoparticulate TiO2 film. Our approach allowed the photocatalytic properties of N719 at the single-molecule level to be quantified, and electron diffusivity and electron collection efficiency as a function of the film thickness were estimated by simulation analyses. Excellent agreement was obtained between the experimental results and theoretical simulations, indicating that the underlying photoinduced electron transfer processes can be reliably explored.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.