Abstract

<p>In the last years, there has been much interest in uncertainty quantification involving trajectories in ocean data sets. As more and more oceanic data become available the assessing quality of ocean models to address transport problems like oil spills, chemical or plastic transportation becomes of vital importance. In our work we are using two types of ocean models: the hindcast and the forecast in a specific domain in the North Atlantic, where drifter trajectory data were available. The hindcast approach requires running ocean (or atmospheric) models for a past period the duration of which is usually for several decades. On the other hand forecast approach is to predict future stages. Both ocean products are provided by CMEMS. Hindcast data includes extra observational data that was time-delayed and therefore to the original forecast run. This means that in principle, hindcast data are more accurate than archived forecast data. In this work, we focus on the comparison of the transport capacity between hindcast and forecast products in the Gulf stream and the Atlantic Ocean, based on the dynamical structures of the dynamical systems describing the underlying transport problem, in the spirit of [1]. In this work, we go a step forwards, by quantifying the transport performance of each model against observed drifters using tools developed in [2].</p><p><strong>Acknowledgments</strong></p><p>MA acknowledges support from the grant CEX2019-000904-S and IJC2019-040168-I funded by: MCIN/AEI/ 10.13039/501100011033, AMM and GGS acknowledge support from CSIC PIE grant Ref. 202250E001.</p><p><strong>References </strong></p><p>[1] C. Mendoza, A. M. Mancho, and S. Wiggins, Lagrangian descriptors and the assessment of the predictive capacity of oceanic data sets, Nonlin. Processes Geophys., 21, 677–689, 2014, doi:10.5194/npg-21-677-2014</p><p>[2] G.García-Sánchez, A.M.Mancho, and S.Wiggins, A bridge between invariant dynamical structures and uncertainty quantification, Commun Nonlinear Sci Numer Simulat 104, 106016, 2022, doi:10.1016/j.cnsns.2021.106016 </p>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.