Abstract

AbstractRelative permeability is a key parameter for characterizing the multiphase flow dynamics in porous media at macroscopic scale while it can be significantly impacted by wettability. Recently, it has been reported in microfluidic experiments that wettability is dependent on the pore size (Van Rooijen et al., 2022). To investigate the effect of pore‐size‐dependent wettability on relative permeability, we propose a theoretical framework informed by digital core samples to quantify the deviation of relative permeability curves due to wettability change. We find that the significance of impact is highly dependent on two factors: (i) the function between contact angle and pore size (ii) overall pore size distribution. Under linear function, this impact can be significant for tight porous media with a maximum deviation of 1,000%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.