Abstract

In current clinical practice, intensity-modulated proton therapy (IMPT) head and neck cancer (HNC) plans are generated using a constant relative biological effectiveness (cRBE) of 1.1. The primary goal of this study was to explore the dosimetric impact of proton range uncertainties on RBE-weighted dose (RWD) distributions using a variable RBE (vRBE) model in the context of bilateral HNC IMPT plans. The current study included the computed tomography (CT) datasets of ten bilateral HNC patients who had undergone photon therapy. Each patient's plan was generated using three IMPT beams to deliver doses to the CTV_High and CTV_Low for doses of 70 Gy(RBE) and 54 Gy(RBE), respectively, in 35 fractions through a simultaneous integrated boost (SIB) technique. Each nominal plan calculated with a cRBE of 1.1 was subjected to the range uncertainties of ±3%. The McNamara vRBE model was used for RWD calculations. For each patient, the differences in dosimetric metrices between the RWD and nominal dose distributions were compared. The constrictor muscles, oral cavity, parotids, larynx, thyroid, and esophagus showed average differences in mean dose (Dmean) values up to 6.91 Gy(RBE), indicating the impact of proton range uncertainties on RWD distributions. Similarly, the brachial plexus, brain, brainstem, spinal cord, and mandible showed varying degrees of the average differences in maximum dose (Dmax) values (2.78-10.75 Gy(RBE)). The Dmean and Dmax to the CTV from RWD distributions were within ±2% of the dosimetric results in nominal plans. The consistent trend of higher mean and maximum doses to the OARs with the McNamara vRBE model compared to cRBE model highlighted the need for consideration of proton range uncertainties while evaluating OAR doses in bilateral HNC IMPT plans.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.