Abstract

We demonstrate a new, facile gas-phase electrostatic approach to successfully quantify equivalent surface area of graphene oxide (GO) colloid on a number basis. Mobility diameter (dp,m)-based distribution and the corresponding equivalent surface area (SA) of GO colloids (i.e., with different lateral aspect ratios) were able to be identified by electrospray-differential mobility analysis (ES-DMA) coupled to a condensation particle counter (CPC) and an aerosol surface area analyzer (ASAA). A correlation of SA ∝ dp,m2.0 was established using the ES-DMA-CPC/ASAA, which is consistent with the observation by the 2-dimensional image analysis of size-selected GOs. An ultrafast surface area measurement of GO colloid was achieved via a direct coupling of ES with a combination of ASAA and CPC (i.e., measurement time was 2 min per sample; without size classification). The measured equivalent surface area of GO was ∼202 ± 7 m2 g-1, which is comparable to Brunauer-Emmett-Teller (BET) surface area, ∼240 ± 59 m2 g-1. The gas-phase electrostatic approach proposed in this study has the superior advantages of being fast, requiring no elaborate drying process, and requiring only a very small amount of sample (i.e., <0.01 mg). To the best of our knowledge, this is the first study of using an aerosol-based electrostatic coupling technique to obtain the equivalent surface area of graphene oxide on a number basis with a high precision of measurement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.