Abstract

Lithium-rich cathodes can store excess charge beyond the transition metal redox capacity by participation of oxygen in reversible anionic redox reactions. Although these processes are crucial for achieving high energy densities, their structural origins are not yet fully understood. Here, we explore the use of annular bright-field (ABF) imaging in scanning transmission electron microscopy (STEM) to measure oxygen distortions in charged Li1.2Ni0.2Mn0.6O2. We show that ABF STEM data can provide positional accuracies below 20 pm but this is restricted to cases where no specimen mistilt is present, and only for a range of thicknesses above 3.5 nm. The reliability of these measurements is compromised even when the experimental and post-processing designs are optimised for accuracy and precision, indicating that extreme care must be taken when attempting to quantify distortions in these materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.