Abstract

Complex systems are sometimes subject to non-Gaussian α-stable Lévy fluctuations. A new method is devised to estimate the uncertain parameter α and other system parameters, using observations on mean exit time or escape probability for the system evolution. It is based on solving an inverse problem for a deterministic, nonlocal partial differential equation via numerical optimization. The existing methods for estimating parameters require observations on system state sample paths for long time periods or probability densities at large spatial ranges. The method proposed here, instead, requires observations on mean exit time or escape probability only for an arbitrarily small spatial domain. This new method is beneficial to systems for which mean exit time or escape probability is feasible to observe.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.