Abstract

AbstractThe unprecedented rise in the power conversion efficiency of solar cells based on metal halide perovskites (MHPs) has led to enormous research effort to understand their photophysical properties. The progress made in understanding the mobility and recombination of photogenerated charge carriers from nanosecond to microsecond time scales, monitored using electrodeless transient photoconductivity techniques, is reviewed. In addition, a kinetic model to obtain rate constants from transient data recorded using a wide range of laser intensities is presented. For various MHPs the temperature dependence of the mobilities and recombination rates are evaluated. Furthermore, it is shown how these rate constants can be used to predict the upper limit for the open‐circuit voltage Voc of the corresponding device. Finally, the photophysical properties of MHPs that are not yet fully understood are explored, and recommendations for future research directions are made.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.