Abstract

AbstractThe shortwave cloud radiative effect (SWCRE) is important for the Arctic surface radiation budget and is a major source of inter‐model spread in simulating Arctic climate. To better understand the individual contributions of various radiative processes to changes in SWCRE, we extend the existing Approximate Partial Radiative Perturbation (APRP) method by adding the absorptivity for the upward beam, considering differences in reflectivity between upward and downward beams, and analyzing the cloud masking effect resulting from changes in surface albedo. Using data from CMIP model experiments, the study decomposes the SWCRE over the Arctic surface and analyzes inter‐model differences in quadrupled CO2 simulations. The study accounts for the influence of surface albedo, cloud amount, and cloud microphysics in the response of SWCRE to Arctic warming. In the sunlit season, CMIP models exhibit a strong, negative SWCRE with a large inter‐model spread. Arctic clouds dampen the surface albedo feedback by reflecting incoming solar radiation and further decrease the shortwave radiation reflected by surface, a fraction of which is scattered back to the surface by clouds. Specifically, this accounts for the majority of the inter‐model spread in SWCRE. In addition, increased (decreased) cloud amount and cloud liquid water reduce (increase) incoming shortwave fluxes at the surface, but they are found to be not critical to the Arctic surface radiation budget and its inter‐model variation. Overall, the extended APRP method offers a useful tool for analyzing the complex interactions between clouds and radiative processes, accurately decomposes the individual SWCRE responses at the Arctic surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.