Abstract

The relationship between developing biologic tissues and their dynamic fluid environments is intimate and complex. Increasing evidence supports the notion that these embryonic flow-structure interactions influence whether development will proceed normally or become pathogenic. Genetic, pharmacological, or surgical manipulations that alter the flow environment can thus profoundly influence morphologic and functional cardiovascular phenotypes. Functionally deficient phenotypes are particularly poorly described as there are few imaging tools with sufficient spatial and temporal resolution to quantify most intra-vital flows. The ability to visualize biofluids flow in vivo would be of great utility in functionally phenotyping model animal systems and for the elucidation of the mechanisms that underlie flow-related mechano-sensation and transduction in living organisms. This review summarizes the major methodological advances that have evolved for the quantitative characterization of intra-vital fluid dynamics with an emphasis on assessing cardiovascular flows in vertebrate model organisms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.