Abstract

Long axial field-of-view (AFOV) PET scanners allow for full-body dynamic imaging in a single bed-position at very high sensitivity. However, the benefits for kinetic parameter estimation have yet to be studied. This work uses (1) a dynamic GATE simulation of [18F]-fluorothymidine (FLT) in a modified NEMA IQ phantom and (2) a lesion embedding study of spheres in a dynamic [18F]-fluorodeoxyglucose (FDG) human subject imaged on the PennPET Explorer. Both studies were designed using published kinetic data of lung and liver cancers and modeled using two tissue compartments. Data were reconstructed at various emulated doses. Sphere time-activity curves (TACs) were measured on resulting dynamic images, and TACs were fit using a two-tissue-compartment model (k4 ≠ 0) for the FLT study and both a two-tissue-compartment model (k4 = 0) and Patlak graphical analysis for the FDG study to estimate flux (Ki) and delivery (K1) parameters. Quantification of flux and K1 shows lower bias and better precision for both radiotracers on the long AFOV scanner, especially at low doses. Dynamic imaging on a long AFOV system can be achieved for a greater range of injected doses, as low as 0.5-2 mCi depending on the sphere size and flux, compared to a standard AFOV scanner, while maintaining good kinetic parameter estimation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.