Abstract

Vertical transfer of solid matter in soils (bioturbation and translocation) is responsible for changes in soil properties over time through the redistribution of most of the soil constituents with depth. Such transfers are, however, still poorly quantified. In this study, we examine matter transfer in four eutric Luvisols through an isotopic approach based on 137Cs, 210Pb(xs), and meteoric 10Be. These isotopes differ with respect to chemical behavior, input histories, and half-lives, which allows us to explore a large time range. Their vertical distributions were modeled by a diffusion-advection equation with depth-dependent parameters. We estimated a set of advection and diffusion coefficients able to simulate all isotope depth distributions and validated the resulting model by comparing the depth distribution of organic carbon (including 12/13C and 14C isotopes) and of the 0–2-μm particles with the data. We showed that (i) the model satisfactorily reproduces the organic carbon, 13C, and 14C depth distributions, indicating that organic carbon content and age can be explained by transport without invoking depth-dependent decay rates; (ii) translocation partly explains the 0–2-μm particle accumulation in the Bt horizon; and (iii) estimates of diffusion coefficients that quantify the soil mixing rate by bioturbation are significantly higher for the studied plots than those obtained by ecological studies. This study presents a model capable of satisfactorily reproducing the isotopic profiles of several tracers and simulating the distribution of organic carbon and the translocation of 0–2-μm particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.