Abstract

The process known as vasomotion, rhythmic oscillations in vessel diameter, has been proposed to act as a protective mechanism for tissue under conditions of reduced perfusion, since it is frequently only observed experimentally when perfusion levels are reduced. This could be due to a resultant increase in oxygen transport from the vasculature to the surrounding tissue, either directly or indirectly. It is thus potentially of significant clinical interest as a warning signal for ischemia. However, there has been little analysis performed to quantify the effects of vessel wall movement on time-averaged mass transport. We thus present a detailed analysis of such mass transport for an axisymmetric vessel with a periodically oscillating wall, by solving the non-linear mass transport equation, and quantify the differences between the time-averaged mass transport under conditions of no oscillation (i.e. the steady-state) and varying wall oscillation amplitude. The results show that if the vessel wall alone is oscillated, with an invariant wall concentration, the time-averaged mass transport is reduced relative to the steady-state, but if the vessel wall concentration is also oscillated, then mass transport is increased, although this is generally only true when these oscillate in phase with each other. The influence of Péclet number and the non-dimensional rate of consumption of oxygen in tissue, as well as the amplitude of oscillations, are fully characterised. We conclude by considering the likely implications of these results in the context of oxygen transport to tissue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.