Abstract

The interventricular septum (IVS) occupies a unique position within the heart, lying between the left (LV) and right (RV) ventricular cavities. Changes in its normal geometry may signify not only abnormalities of the septal myocardium, but also abnormal pressure differences between the LV and RV. Flattening of the IVS has been noted with cross-sectional imaging in association with pulmonary hypertension, but the septal curvature and shape have not previously been measured in three dimensions. This paper describes a method to model the RV surface of the IVS from spatially registered cross-sectional images for measurements of curvature. A smoothing 2D spline surface is constructed through the RV septal surface at regular times during the cardiac cycle, and the principal curvatures, as well as the Gaussian and mean curvatures, shape index, and curvedness, are calculated. Vector and color surface maps and graphs of average curvature and shape indices are constructed. Consistent curvature patterns were observed in four normal subjects. This method of measuring septal geometry can provide potentially useful new information on the effects of RV disease. We examine the problem of describing septal motion, and describe a simple measure of septal curvature that may be of clinical value.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.