Abstract

Protein diffusion in living cells might differ significantly from that measured in vitro. Little is known about the effect of globular protein size on rotational diffusion in cells because each protein has distinct surface properties, which result in different interactions with cellular components. To overcome this problem, the B1 domain of protein G (GB1) and several concatemers of the protein were labeled with 5-fluorotryptophan and studied by 19F NMR in Escherichia coli cells, Xenopus laevis oocytes, and in aqueous solutions crowded with glycerol, or Ficoll70™ and lysozyme. Relaxation data show that the size dependence of protein rotation in cells is due to weak interactions of the target protein with cellular components, but the effect of these interactions decreases as protein size increases. The results provide valuable information for interpreting protein diffusion data acquired in living cells. Graphical abstract Size matters. The protein rotational mobility in living cells was assessed by 19F NMR. The size dependence effect may arise from weak interactions between protein and cytoplasmic components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.