Abstract
The bacterial release of outer membrane vesicles (OMVs) is an important physiological mechanism of Gram-negative bacteria playing numerous key roles. One function of the release of OMVs is related to an increase in surface hydrophobicity. This phenomenon initiates biofilm formation, making bacteria more tolerant to environmental stressors. Recently, it was qualitatively shown for Pseudomonas putida that vesicle formation plays a crucial role in multiple stress responses. Yet, no quantification of OMVs for certain stress scenarios has been conducted. In this study, it is shown that the quantification of OMVs can serve as a simple and feasible tool, which allows a comparison of vesicle yields for different experimental setups, cell densities, and environmental stressors. Moreover, the obtained results provide insight to the underlying mechanism of vesicle formation as it was observed that n-alkanols, with a chain length of C7 and longer, caused a distinct and steep increase in vesiculation (12-19-fold), compared to shorter chain n-alkanols (2-4-fold increase).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.