Abstract
Temperature programmed desorption of CO coadsorbed with atomic N on Rh(100), reveals both long- and short-range interactions between adsorbed CO and N. For CO desorption from Rh(100) at low coverage we find an activation energy Ea of 137±2 kJ/mol and a preexponential factor of 1013.8±0.2 s−1. Coadsorption with N partially blocks CO adsorption and destabilizes CO by lowering Ea for CO desorption. Destabilization at low N coverage is explained by long-range electronic modification of the Rh(100) surface. At high N and CO coverage, we find evidence for a short-range repulsive lateral interaction between COads and Nads in neighboring positions. We derive a pairwise repulsive interaction ωCO–NNN=19 kJ/mol for CO coadsorbed to a c(2×2) arrangement of N atoms. This has important implications for the lateral distribution of coadsorbed CO and N at different adsorbate coverages. Regarding the different lateral interactions and mobility of adsorbates, we propose a structural model which satisfactorily explains the observed effects of atomic N on the desorption of CO. Dynamic Monte Carlo simulations were used to verify the experimentally obtained value for the CO–N interaction, by using the kinetic parameters and interaction energy derived from the temperature-programmed desorption experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.