Abstract

In this work, blends of olive and soybean oils were analyzed by near-infrared spectroscopy (NIR), mid-infrared (MIR), and Raman techniques to evaluate adulterations in olive oils. A representative group of different commercial brands of soybean oil and extra-virgin olive oil were analyzed by gas chromatography with flame ionization detector in order to explore the chemical similarity and composition of the fatty acid (FA) profile. Two stock solutions were prepared, one produced from a mixture of soybean oils and the other from the mixture of olive oils. From these stock solutions, 60 samples were prepared, simulating adulteration levels of extra-virgin olive oil with soybean oil between 0 and 100 %. It was possible to fit a model able to predict fraud within the interval investigated by partial least squares regression approach, with precision and accuracy values for root mean squared error of prediction of 1.76 (NIR), 4.89 (MIR), and 1.57 (Raman) and coefficient of determination R 2 greater than 0.98 for the three techniques. The methodologies demonstrated to be very useful for the quantification of extra-virgin olive oil adulteration with soybean oil, presenting short analysis time, low cost, and absence of sample preparation procedures as main advantages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.