Abstract

AbstractUnderstanding electron correlation is crucial for developing new concepts in electronic structure theory, especially for strongly correlated electrons. We compare and apply two different approaches to quantify correlation contributions of orbitals: Quantum Information Theory (QIT) based on a Density Matrix Renormalization Group (DMRG) calculation and the Method of Increments (MoI). Although both approaches define very different correlation measures, we show that they exhibit very similar patterns when being applied to a polyacetelene model system. These results suggest one may deduce from one to the other, allowing the MoI to leverage from QIT results by screening correlation contributions with a cheap (“sloppy”) DMRG with a reduced number of block states. Or the other way around, one may select the active space in DMRG from cheap one‐body MoI calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.