Abstract
Extracellular vesicle (EV) quantification is a procedure through which the biomedical potential of EVs can be used and their biological function can be understood. The number of EVs isolated from cell culture media depends on the cell status and is especially important in studies on cell-to-cell signaling, disease modeling, drug development, etc. Currently, the methods that can be used to quantify isolated EVs are sparse, and each have limitations. In this report, we introduce the application of a quartz crystal microbalance (QCM) as a biosensor for quantifying EVs in a small drop of volatile solvent after it evaporates and leaves desiccated EVs on the surface of the quartz crystal. The shifts in the crystal’s resonant frequency were found to obey Sauerbrey’s relation for EV quantities up to 6 × 107, and it was determined that the biosensors could resolve samples that differ by at least 2.7 × 105 EVs. A ring-shaped pattern enriched in EVs after the samples had dried on the quartz crystal is also reported and discussed. QCM technology is highly sensitive and only requires small sample volumes and is significantly less costly compared with the approaches that are currently used for EV quantification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.