Abstract
This study suggests a machine learning model for predicting the production quality of free-machining 303-series stainless steel small rolling wire rods according to the manufacturing process's operation condition. The operation condition involves 37 features such as sulfur, manganese, carbon content, rolling time, and rolling temperature. The study procedure includes data preprocessing (integration and refinement), exploratory data analysis, feature selection, machine learning modeling. In the preprocessing stage, missing values and outlier are removed, and variables for the interaction between processes and quality influencing factors identified in existing studies are added. Features are selected by variable importance index of lasso regression, extreme gradient boosting (XGBoost), and random forest models. Finally, logistic regression, support vector machine, random forest, and XGBoost is developed as a classifier to predict good or defective products with new operating condition. The hyper-parameters for each model are optimized using k-fold cross validation. As a result of the experiment, XGBoost showed relatively high predictive performance compared to other models with accuracy of 0.9929, specificity of 0.9372, F1-score of 0.9963 and logarithmic loss of 0.0209. In this study, the quality prediction model is expected to be able to efficiently perform quality management by predicting the production quality of small rolling wire rods in advance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Society of Korea Industrial and Systems Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.