Abstract

The fifth-generation (5G) mobile communication system is expecting to support users with diverse data rate requirements by densely deploying small cells. The users attached with small cells make use of the same frequency band as the existing macro cell users, that causes severe co-channel interference and degrades the performance. To overcome this challenge, we propose a game theoretical framework for the optimal uplink power allocation for small cells, i.e., femtocell deployed underlaid macrocell. In this paper, femtocell users play a non-cooperative game to choose the optimal power to maximize the sum-rate of the system. Furthermore, an iterative quality-of-service (QoS)-aware game theory based power control (QoS-GTPC) scheme is proposed to optimize the femtocell user power taking into account macrocell user QoS requirements. Simulation results verify that the proposed QoS-GTPC scheme significantly improves the sum-rate and reduces outage and interference, as compared with conventional power control scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.